
Assembly Language Programming 9/1/2004

Dr. Tim Margush 1

Introduction

Assembly Language Programming
University of Akron

Dr. Tim Margush

9/1/2004 Dr. Tim Margush - Assembly
Language Programming

2

What Is Assembly Language

• Machine-Specific Programming Language
› one-one correspondence between statements

and native machine language
› matches machine instruction set and

architecture
• IBM-PC Assembly Language

› refers to 8086, 8088, 80186, 80286, 80386,
80486, and Pentium Processors

9/1/2004 Dr. Tim Margush - Assembly
Language Programming

3

What Is An Assembler?

• Systems Level Program
› translates assembly language source code to

machine language
• object file - contains machine instructions, initial

data, and information used when loading the
program

• listing file - contains a record of the translation
process, line numbers, addresses, generated code
and data, and a symbol table

Assembly Language Programming 9/1/2004

Dr. Tim Margush 2

9/1/2004 Dr. Tim Margush - Assembly
Language Programming

4

Why Learn Assembly Language?

• Learn how a processor
works

• Understand basic
computer architecture

• Explore the internal
representation of data
and instructions

• Gain insight into
hardware concepts

• Allows creation of
small and efficient
programs

• Allows programmers
to bypass high-level
language restrictions

• Might be necessary to
accomplish certain
operations

9/1/2004 Dr. Tim Margush - Assembly
Language Programming

5

Data Representation

• Binary 0-1
› represents the state of

electronic components
used in computer
systems

• Bit - Binary digit
• Byte - 8 Bits

› smallest addressable
memory location (on
the IBM-PC)

• Word - 16 Bits
› Each architecture may

define its own
“wordsize”

• Doubleword - 32 Bits
• Quadword - 64 Bits
• Nybble - 4 Bits

9/1/2004 Dr. Tim Margush - Assembly
Language Programming

6

Numbering Systems

• Binary - Base 2
› 0, 1

• Octal - Base 8
› 0, 1, 2, … 7

• Decimal - Base 10
› 0, 1, 2, …, 9

• Hexadecimal (Hex)
› 0, 1, …, 9, A, B, …, F

• Raw Binary format
› All information is

coded for internal
storage

› Externally, we may
choose to express the
information in any
numeration system, or
in a decoded form
using other symbols

Assembly Language Programming 9/1/2004

Dr. Tim Margush 3

9/1/2004 Dr. Tim Margush - Assembly
Language Programming

7

Decoding a Byte

• Raw
› 01010000b

• Hex
› 50h

• Octal
› 1208

• Decimal
› 80d

• Machine Instruction
› Push AX

• ASCII Character code
› ‘P’

• Integer
› 80 (eighty)

• BCD
› 50 (fifty)

• Custom code ???

9/1/2004 Dr. Tim Margush - Assembly
Language Programming

8

Machine Language

• A language of numbers, called the
Processor’s Instruction Set
› The set of basic operations a processor can

perform
• Each instruction is coded as a number
• Instructions may be one or more bytes
• Every number corresponds to an instruction

9/1/2004 Dr. Tim Margush - Assembly
Language Programming

9

IBM-PC Instruction Example

• 1011000000000101b or B005h
• OpCode = 10110000b

› Copies a byte into AL (a register)
› The byte is found in the second half of the

instruction: 00000101b
• The Operation Code identifies the type of

instruction and provides some information
about the instruction length

Assembly Language Programming 9/1/2004

Dr. Tim Margush 4

9/1/2004 Dr. Tim Margush - Assembly
Language Programming

10

Assembly Language vs Machine
Language Programming

• Machine Language Programming
› Writing a list of numbers representing the bytes

of machine instructions to be executed and data
constants to be used by the program

• Assembly Language Programming
› Using symbolic instructions to represent the

raw data that will form the machine language
program and initial data constants

9/1/2004 Dr. Tim Margush - Assembly
Language Programming

11

Assembly Language Instructions

• Mnemonics represent Machine Instructions
› Each mnemonic used represents a single

machine instruction
› The assembler performs the translation

• Some mnemonics require operands
› Operands provide additional information

• register, constant, address, or variable

• Assembler Directives

